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We consider best approximation in L,(R), 1 <p< o0, by means of entire func-
tions y of exponential type subject to additional constraints I',(¥)=0, j=1,.., K.
Here [, are (unbounded) linear functionals of the form I, (y)=D"y(s)—
S a, D"yls]) where s, are fixed points. € 1993 Academic Press, Inc

1. INTRODUCTION

The concept of “best approximation” is one of the most important in
approximation theory. As examples we mention best approximation by
algebraic or trigonometric polynomials. In general one considers quasi-
normed spaces X and & < X and the best approximation functional

E(A4, x)=E@A x: X, &) =inf{|lx —ylly: I y]s <2}

Here || ||y and || ||, denote the quasi-norms of X and &, respectively.

(Remark. We use the word quasi-norm in the sense defined in
['1, Sect. 3.10]. Thus we only require positivity, || — x|l = ||x||, and the quasi-
triangle inequality, ie., [[x + |l <c(llx] + || yll) where ¢ = 1.)

One of the main problems is to characterize the space E,=E. (X, &) of
all xeX such that E(A, x)=0(4i *) as A—oc. More generally one
considers the space E,,=E,, (X, &) of all xe X such that

o« N\ Lip
(f (A*E(A, x))ﬂfi—") <o, (1.1)
1 A

where 1 €< p < oo (or sometimes 0 < p < 0).

In this note we shall consider a variation of this problem. In the defini-
tion of E(4, x) we shall only admit y satisfying additional constraints
I(y)=0, .., I'g{y)=0. Thus we put

Er(i x)=inf{lx =yl 1¥ls<i Fi(3)= - = T (3)=0).
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Replacing E(4, x) by E,(4, x) in (1.1) we then get a sub-space E,, of E .
This note deals with the problem of characterizing the space E,,, in a
specific model situation.

We shall let X be the Lebesque space L, on the real line. As space & we
shall use the space of entire functions of exponential type belonging to L,.
Thus & consists of all ye L, with Fourier transform y " having compact
support. The quasi-norm (or order) of y is given by

I¥lls=sup{i&l:&esupp(y")}.

The simplest type of constraints will be of the form y(s;)= --- =y(s,)=0,
where s,,.., s, are given distinct points. For a given j we can also
consider constraints of the form D"y(s;)= ... =D"p(s,)=0 where

ny<n,< --- <n,. The most general type of constraints we will consider
are defined as follows. Let s, ..., 5, be distinct points. For a given j we put

Pu(Dy=D"— % ayD’, k=1, .,K, (1.2)

/
r<ng

and

Lu(y)=(Pu(D) y)s;). (1.3)

Here j=1, .., J and the numbers n,, k=1, .., K, are distinct non-negative
integers.

MaAIN RESULT

Let E(4, x) be the best approximation of x in L,(R) by means of entire
functions of exponential type of order A. Similarly, let E,(/, x) be the
corresponding best approximation by means of functions satisfying the
additional constraints I';{ v} = (P, (D)y)(s;) =0 where s,, ..., 5, are distinct
points and the differential operators P, are given by (1.2). For a given j the
orders n,;, of P, are assumed to be distinct. Then

o 1p
(f’ (A*E (4, X)) f?) <o, (1.4)

if and only if the following two conditions hold:

o lip
(f (A*E(4, X)) ‘i-”) <o, (1.5)
1
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Fy(x)=0, if a>n,+1/p,

£ T iip
(J (—J |(ij(D)x)(s,--i—s)l”ds)""’fig) <o, if a=ng+1/p, (16)
0

) .

no condition if a<n,+1/p.
In (1.6) we have j=1,..,J, k=1,.,K;,, and O<a<ow, I1<p< 0,
1 € p < co. The number ¢ is an arbitrary (small) positive number.
Condition (1.5) can be rephrased in terms of Besov spaces (or interpola-
tion spaces). Let N be any integer such that N> «. Then we introduce the
modulus of continuity

) (%)= sup |14} x|,
|hl <t

where 4, is the first order difference operator defined by 4, x(s)=

x(s + h) —~ x(s). The Besov space Bj , consists of all xe L, such that

1ip
(fl (w1, x))”%) < 0. (1.7)
0

Conditions (1.5) and (1.7) are equivalent. Using this fact, we get an
explicit characterization of the space defined by (1.4).

Similar results were obtained by Grisvard[2] and Lofstrom [3,4] in
connection with interpolation of boundary value problems.

This work was supported by the Swedish Research Board for Natural
Sciences.

2. Two BasiCc INEQUALITIES

The inequalities of Jackson and Bernstein play an important role in the
characterization of the approximation spaces E,, (no constraints). To
describe these inequalities we introduce generalized Sobolev space H ;,V as
follows. Let the operator |D| be defined by (/D] x)"~(£)=|&| x~(&). Then
H 7 consists of all L, -functions x such that |D|” xe L,. As semi-norm on
H 7 we use

Ixly=11DI" x|,
where | || denotes the norm on L,. Then the inequalities of Jackson and
Bernstein read
E(4, x)<CA ¥ x|l v, xeH), (2.1

x| v < Clixll§ Hlxll, xeé. (2.2)
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These inequalities can be used to characterize the approximation space E
as a Besov space.

We are now going to state and prove the counterparts of the inequalities
of Jackson and Bernstein for best approximation with constraints,

Consider the constraint operators 7, defined in Section 1, using the
differential operators P, of order n,. Choose an integer N which is large
enough (see below). Then Sobolev’s embedding theorem implies that if
x€ H then Py x are continuous functions on the real line. Thus 77 (x) are
well defined quantities. We now introduce the space H - of all xe H such
that I, (x)=0forj=1,.,J, k=1, .., K,. We also consider the space of all
x € & satisfying these constraints.

10

THEOREM 1 (The Inequalities of Jackson and Bernstein). If N is larger
than the orders of the differential operators appearing in the definition of the
constraints Iy, then

Er(A,x)<Cl Yxlly,  if xeH}., i>1, (23)
Ixty < Clxlg 1Xl, i xedp x>0 (2.4)

Proof. Bernstein’s inequality (2.4) follows at once from (2.2). For the
convenience of the reader we give the simple proof.

Choose a function @ in the Schwartz class ¢ such that @"(&)=1 for
€] <1/2 and @~ (&) =0 for [¢] > 1. Put @;(s)= AP(As). Then if xe &, and
[ xll s = u, we have @, »x=x. Thus

lxlly = llxll = [1D1¥ @y, % x| = (2u)™ [(IDI¥P),, * x].

Since !D|Y @€ L,, we conclude that (2.4) holds.

We now prove Jackson’s inequality (2.3). This is easy if we have no
constraints, since then we can simply put y=@ xx. Clearly yeé& and
I ¥l < 4. Consequently E(4, x) < | x— y|l. Now define a function ¥ in ¢ by
writing

o) =1E (@M () —D N (20)).
Then
x—y=Y (@pa—P)xx=4i VY 2V, . x|DVx, (25)

v>0 v20
which implies
Ix =y S CA™ Y x|y (26)

This proves (2.1).
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To show (2.3) we shall modify y to satisfy the constraints. Let us
introduce the functions

@A, 8)=Ty (D, (-—5)), ji=L..J, k=1 ..K,.

Upn =, Com i Pt I=1,..J, m=1,.,K,.

jok
We shall choose the coefficients ¢, ; so that

1 if j=Lk=m,

T ol 4, 5)ds= : 2.7
J‘_x Pl 8) (2 5) s {0 otherwise. 27)

We shall prove that this is possible and that
[l < CA="im = 1iF, (2.8)

Accepting this for the moment we put

-’-':}"‘Z Dy(y) @, xuy.
jik
Then (2.7) implies that

o

Lo 2) =TV = S T [ @uals 8,4l 5) ds =0,
j. k >

for all /, m. Thus ze &, and

Er(hx)<lx~—zl <lx =yl + 2 (Lm0 1D % .

I.m
If xe H; we have I',,(x) =0. Thus, using (2.5) we get
I D) = 1 (x = S AN 3 27 (227, N s (2.9)

v20
where
WIm(#s S) = Flm( W;‘( T S))
and | ||” denotes the norm in L,. Later on we shall prove

N s ) < Cpm+ 10, (2.10)

Thus (2.9) implies ‘
[F i Y} S CA™NHmm e 7 ] .

Using this combined with (2.6) and (2.8), we get (2.3).
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It remains to prove (2.7), (2.8), and (2.10). Let us put
bjk, m= (q)[k’ (le) :J. i (pjk(’{’ S) (plm(’L S) dS,

and consider the square matrix B formed by these numbers. For each 4> 0,
B has an inverse, because

-

Z fjk bik. m<im dS

jkim

Z :jk (p;k(;"s S)
*
k

Y zu Pulid) e @7 (g/h)

>3

= >0
for all z such that ) |z,|*=1. This is the point where we use the fact that

the orders n;, of P, are distinct for a given j.
Now we define the matrix [c,_ ,,] to be the inverse of B. Writing

o

D, =D"P, n=n,,

we have
Ol A, 5)=A"(D, (s5,~5)— Z Ay A7 "B, (5, —5))
=A"11Q, (A, As,— As).
Thus

b im= At j " Q;k(']w §) 8, (4, Als,— Sj) +5) ds.

This implies that if j#/ (ie, s,#5s,), then b, ,, is very small if 1 is large.
If j=1, then b, ,, has the form

b_/’k. im= /:n,/. * o (ﬂ/k. Im + 0(/: : ))
Therefore

Clm, ik = ']' i P (’ylm. ik + O('J' ! ))
and thus

Uy, = ; o Z (7/‘ m, jk + 0(;‘ l)) Q;’k(Aﬂﬂ },S, - /‘{S)'

j-k

This gives (2.8).
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The estimate (2.10) is proved in a similar way since ,,, has the form

lplm(’:ﬂS)=;~"Im+]élm(is ;\.S,—/{S). I

3. BEST APPROXIMATION AND INTERPOLATION

Using the inequalities of Jackson and Bernstein, we now describe best
approximation spaces in terms of interpolation spaces. Let E,, be the
space of all xe L, such that

o di\'""*
(j (A’Er(i,x))"7> <, 1<p<. (3.1)
t
THEOREM 2. Suppose N is a positive integer and that 0 <o < N. Then
E.or=(L,, H) g p» 0=ua/N. (3.2)

Proof. First let us recall the definition of the interpolation space on the
right-hand side of (3.2). It is defined by means of the functional

Kr(t, xy=inf{llx—pll + 1l yllv: ye H )}

The space (L,, H ), , consists of all xe L, such that

1ip
(j' (1K (1, x))ﬂ—“g) <. (3.3)
0

Thus we shall prove that (3.1) and (3.3) are equivalent if § = o/N.
To prove that (3.3) implies (3.1) we note that for any ye H,’:’, we have,
using Jackson’s inequality

Er(A )< |x =y + Ef(A ) SC(lx =y + 27" ¥]»).

This implies E-(4, x) < CK (477, x).

Conversely assume that | x—z|| <2E,(27, x) where z, €&, |z,ll,<2"
(r=1). Put z,=0. Then x=3,.,(z,,, —z,). By Bernstein’s inequality we
have

KF(A‘N’ zr+ 1 —Zr)gmin(llzr+ L ——Zr”’ iﬁN“":r+ [ Zr“N)
<Cmin(l, %2z, |, —z,].
Thus
KA % x)<C Y min(l, A-"2Y)E (27, x).

r=0
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From this estimate we deduce that (3.1) implies (3.3) in the following way.
First we observe that

1ip
(It Kot )
0 4

tip
< C( Z (21\K1(2 — N.\” x))ﬁ)

s20

/N lip
< C( Z ( Z s r) min(l, 2N(r —,t)) zarEr(zr’ X)) ) )

520 Nr20

The right-hand side can be viewed as the norm of a convolution between
the sequences 2 * min(1, 2*") and 2*E(2’, x). Since

Y 2 min(1,2Y) < 0
we conclude that

1 dn\'"» v
([ r e ) <o (5 erEeor)
0

rz0

This proves the implication from (3.1) to (3.3).

4. REDUCTION TO A SINGLE POINT

We consider a set I of constraints of a particular form. They are
given by means of distinct points s,, j=1, .., J, and differential operators
P, by means of the formula /(x)=(Py(D)x)(s;)=0. For a given m
(m=1,..,J) we let I'; be the set of all constraints Iy, k=1, .., K;, and

H); be the space of all xe H such that I, (x)=0 for k=1, .., K,. We
claim that

M
(Lps Hypow= () (L, H}p Do, (4.1)

n =1

This result makes it possible to reduce the proof of our main result to a
single point ;.

To prove (4.1) let x belong to the intersection on the right-hand side.
Assume that y;e H 7 and

[x =yl +tlyIn<2Kp(tx),  j=1,..J
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We also assume that yge H,’," and ||x— yoll + tllyoll » < 2K(1, x) where
K(t, x)=inf(|x — y| + ¢yl v) (no constraints). Let x, be an infinitely
differentiable function with compact supports in a small neighbourhood of
5; and assume that y; is identically ! in a neighbourhood of s;. Put
ro=1=2y;and z=yopo+x1¥1+ --- + 1,5, Then I';(z)=0 for all j and
thus

]

Kp(t, x)<lx—z| + tlizll v Z (xe(x =) I+ 1w yllv)

g

Z (lx =yl + tlyell ).

This proves that xe(L,, H pr)g .- The converse inclusion is trivial.
In order to prove our main result it is now enough to consider a single
constraint I” of the form I, (x)=(P,(D) x) (0) =0 where

Pi(D)yx=D"— Y aDx, 0<n<- - <ny,<N.

<y
The rest of the paper will be devoted to the proof of the following theorem.
THEOREM 3. The interpolation space (L,, H ), , such that

Te(x)=(Pi(D)x)(0)=0, if 6N>n,+1/p,
(FGT 2Dy x(oNrds)  <m i ON=mt 1,
o \TVY -

no condition if ON<n, +1/p.

Clearly this result, in combination with (4.1) will give our main result.

5. PrROOF OF THEOREM 3

As a first step towards the proof of Theorem 3 in the previous section,
we shall characterize the interpolation spaces (L,, H)), ,and (L,, H })s ,
in a way that makes it easy to compare these two spaces.

Let us put H Y = H and define H ), as the space of all xe H such that
I''(x)=0 for k=1, .., m Here I'(x)=(P,(D) x)(0) and P, are differen-
tial operators of order n, (0 <n, < --- <n,, < N). Then we shall recursively
characterize the spaces (L, H}:’,,,)a,p, m=0, 1, .., M, by means of a family
A,,(t) of operators and a corresponding functional L, defined by

L(t,x)=]x—A () x| +1]A4,() x|y, O<t<oc. (5.1)

640;73/3-9
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LEMMA 1. Suppose A,(t) is strongly continuous on L, and that A, (t)
maps L, into H ,’:’m for each t > 0. Moreover, assume that

x = A,.(0) xil, th4,,(1) x| v < Cllx]] if xelL,, (52)

lx = A, () xl A, () Xy < Ctlixlly — if xeH)

pm’

Then xe(L,, H” ), , if and only if xe L, and

pm
! dn\\'"*
(f (z"“L,,,(t,x)"—)) < 00,
0 !

Proof. See [1]. |}

In order to define the operator A,(¢) we introduce the function H* by
the formulas

H(&)=(1+&Y) Y H(sy=1 'H(s/7). (5.3)

Then we put A1) x=H"*x, if t=1" Then it is easy to see that (5.2)
holds with m=0. Next we define A,,(r) by a construction which is similar
to the one used in the proof of Theorem 2. We put

¢,(t1,0)=(P(D)H")(~0) (5.4)

A x=H xx—=% (x, ¢.) H xu,, (5.5)
k=1
where the functions u, are defined by

nt

Up = Z Cry Py (56)

v=1

(U, @,)=04,- (5.7)

This means that the matrix [¢,,] is the inverse of the matrix [b,, ] where
b =(¢@,, 0,). The existence of an inverse is proved in the same way as in
the proof of Theorem 2. It follows that

gl < ez v, (5.8)

As a consequence we get

Ix= A DXI <Ix=H s xll+¢ 3 7|, ), 1=t
k=1
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and

A X n < HH % x| v+ 3 P [(x, 9,)l.
k=1

Moreover we have (P, (D) A4,,(1)x)(0)=0. In order to show that A,(1)
satisfies the assumptions of Lemma 1 it is enough to show that

Hx, @)l < Co= ™= " min({lx], o [lx]l v ).

This is easily seen in the following way. First note that

106 @l < Dxll lgull” < Co=™ =17 1xfl.

If erS’m we have (P, (D)x)(0)=0. Now note that y*xH' =
y—1*¥|D|¥y* |D|" H*. Thus we have

(x, @)= (P(D) x « H*)(0)
= (P(D) x)(0) = *™(|DI¥ P.(D) x = |D|" H*)(0)
= —1*"(|D|" x » P.(D) |D|™ H")(0).
Consequently,

[(x, @ < CeV x|y if xeH),.

We have now proved that A4,,(¢) satisfies the assumptions of Lemma 1. As
a consequence we get the following lemma.

LEMMA 2. Let H® be defined by (5.3). Then xe(L,. H),)
only if

1
XE(L,,, H;}:V)o.o (_[ (T SNOrm L
0

<o for k=1,., m.

if and

o, p

P 1ip
) dr/t)

Proof. First note that (L,, H) ), ,<(L,, H), ), Let L, be
defined by (5.1). By inspection of the difference between L,, and L,, |, one

easily sees that xe (L,, H ), , if and only if xe (L,, H,, . ), , and

J‘oo H(—a) P.(D) x(0) do

—

0

1
(f (Y1, @)l - I % w7 /) < oo,

where |H, * u,,|| < Ct™* ', Since (x, ¢,,) = (P,.(D)x+ H)(0), we get the
conclusion of the lemma. |
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The proof of Theorem 3 is now nearly complete. We have only to apply
the following result.

LeMMA 3. Assume that ye(L,, H)), ,. Then

R Y — ! —Nn+1/p
n.o(¥) AT

if and only if

n.p

4 Lip
> dt/t) < o0

»0)=0 if Nn>1/p,

lip

(fo(lj |y(o)|ﬂda)wdr/r>‘ <, if Nq=1/p,

T

[ H(—0) 30} do

no condition iff Np<l1/p.

Proof.  First consider the case = Ny — 1/p>0. Suppose ye (L,, H)), ,
and R, ,(y)<oo. Then y is a continuous function and

lim [ HY(—0)y(o)do=cy(0), c#0.

t—-0v _.

Consequently R, ,(y)<co implies y(0)=0 if a>0. Conversely assume
»(0)=0. Then we put z(s)=y(s)—y(2 's) and z,(s)=2z(2 *s). Then
¥y=%is02 and ze(H,, H},), , where I(z)=2(0)=0. Then Lemma 2
implies that R, ,(z)<co. Thus

R, (»< Y R, (z)= ) 27%*R, (2) <.

k=0 k=20

Next consider the case a =Ny — 1/p <0. Then put z(s) = y(s) — y(2s) and
24(s)=z(2*s). Then y=3,.02 in L, and ze(H,, H}),, so that
R, ,(z)<oc. Thus

R,,(»)= % R, ,(z)= ) 2R, ,(z)<o0.

k=0 k=0

Finally we consider the case « =0. Then partial integration gives

J:C H'(—o)y(o) do

o 1 pot
< } I DH(o) —J y(s)ds do
0 T-o

o 1 ot 1jp
<f | DH(o)| —f Iy(s)|”ds) do.
0 aT Yo
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It follows that

o

1ip
| ¥(s)]? ds) do,

Ux H(=0)y(0) do

<[ 1ol i@ (- f

which implies R, ,(y) < c0.
Still considering the case =0, ie., N, =1/p, we shall now prove that
R, ,(y) <o implies that

£ olp 1/p
(j (1 | y(s)|? ds> ‘—15> < .
0o \T T

If R, ,(y)<oo we have ye(L,, H,’,"r),,‘,, where I'y = y(0) (by Lemma 2). It
is a routine matter to prove that ye(L,, H ,', )isp. »- For the convenience of
the reader we provide the details here. Using the so called J-method of
interpolation theory (see [1, Sect.3.2]) any ye(L,, Hf,"r),,_p can be
represented as

yis)= j: u(z, 5) dey,

where u(7,0) =0 and

) | dr\ e
(L (Tw,f,,max(nu(f)||,rNHu(t)HN))”?T) <

Using Kolmogorof's inequality we have
max(fju(t)]l, tllu(o)l,) < € max(lu(z)l, t¥|u) »).

Thus

i/p

) | d
(L (r“‘“"’max(llu(f)il»T““(T)”’))p%> =

which implies ye(L,, H ;lfr)l/’p. ,- By definition this means that y =y, +y,
where y, € H“,, y(0)=0. Given any function z we define Z by

(s) = z(s) if 520,
=10 i s<o.

Then 7, eH,’,, Jo€ L,, in both cases with equal or smaller norms. Thus
j=po+7,€(L,, H}), ,. But this implies that

o 0 1/p\ p i/p
(I7 (e (7 wtsen-sonras) ) F) <,
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which gives

% T P/ Lip
(j (1J xy(snpds) pf{f) <.
0 T VY0 T

Replacing y(s) by y(—s) we get

(J;; (% J‘; | p(s)? ds)M %)W <. §

We can now conclude the proof of Theorem 3, by applying Lemma 3
with v=P,(D)x and n=0—n,/N.
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