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We consider best approximation in L p (IR), I ~p~x, by means of entire func­
tions y of exponential type subject to additional constraints T, (y) = 0, j = 1, ... , K.
Here T} are (unbounded) linear functionals of the form T,(y) = Dny(s,)-

La, D'y(s}) where s, are fixed points. (1993 AcademiC Press. Inc

I. INTRODUCTION

The concept of "best approximation" is one of the most important in
approximation theory. As examples we mention best approximation by
algebraic or trigonometric polynomials. In general one considers quasi­
normed spaces X and g c X and the best approximation functional

E(A, x) = E(A, x; X, 1,) = inf{ Ilx - Yllx: Ilyll,\' <).}.

Here II II x and II II <f denote the quasi-norms of X and g, respectively.

(Remark. We use the word quasi-norm in the sense defined in
[1, Sect. 3.10]. Thus we only require positivity, II-xII = Ilxll, and the quasi­
triangle inequality, i.e., Ilx+YII :::;;c(llxll + IIYII) where c~ 1.)

One of the main problems is to characterize the space Ex = Ex(X, g) of
all XEX such that E(A,x)=O(Je X) as ),---+co. More generally one
considers the space E,,, = E,,, (X, 6') of all x E X such that

(

X dA)lil'J ().'E()., x))1' -.- < CO,
I I.

( 1.1 )

where 1 :::;; p :::;; co (or sometimes 0 < P :::;; CfJ ).

In this note we shall consider a variation of this problem. In the defini­
tion of EO., x) we shall only admit Y satisfying additional constraints
r 1(y)=o, ..., rK(y)=o. Thus we put

Er()·,x)=inf{IIx-YII/: IIylI,\'<).,r1(y)=· .. =rKCr)=O}.
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Replacing EO., x) by Er(A., x) in (1.1) we then get a sub-space Er~" of E~".

This note deals with the problem of characterizing the space E 1">" in a
specific model situation.

We shall let X be the Lebesque space Lp on the real line. As space g we
shall use the space of entire functions of exponential type belonging to L p .

Thus 8 consists of all YELp with Fourier transform y A having compact
support. The quasi-norm (or order) of y is given by

Lvlls = sup{ I~I: ~ E supp(y A)}.

The simplest type of constraints will be of the form y(s I) = ... = y(sJ) = 0,
where SI, ... , SJ are given distinct points. For a given j we can also
consider constraints of the form D"'y(sj) = ... = D""'y(sj) = 0 where
fl l <fl 2 < ... <flM' The most general type of constraints we will consider
are defined as follows. Let SI, ... , SJ be distinct points. For a given j we put

and

r < lljk

k= 1, ...,K
1

, (1.2)

(1.3)

Here j = 1, ... , J and the numbers fl,b k = 1, ... , K j , are distinct non-negative
integers.

MAIN RESULT

Let E()., x) be the best approximation of x in L p(lH) by means of entire
functions of exponential type of order L Similarly, let E r o., x) be the
corresponding best approximation by means of functions satisfying the
additional constraints Tjk(y) = (Pjk(D)y)(sj) = 0 where SI' ... , SJ are distinct
points and the differential operators Pjk are given by (1.2). For a given j the
orders fljk of P jk are assumed to be distinct. Then

(

X dl) 1/"r (A.'ErP., x))" T <x,

if and only if the following two conditions hold:

(

X dA)lil>r (,FE(A, x))" A.' < x,

( 1.4 )

( 1.5)
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no condition

if ct. = nkj + I/p,
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(1.6 )

In (1.6) we have j=I, ...,J, k=1, ...,Kj , and O<ct.<oo, I~p~oo,

I ~ p ~ 00. The number e is an arbitrary (small) positive number.
Condition (1.5) can be rephrased in terms of Besov spaces (or interpola­

tion spaces). Let N be any integer such that N> ct.. Then we introduce the
modulus of continuity

w; (t, x) = sup 11,1 ~ xll p ,

Ihl < t

where ,1 h is the first order difference operator defined by ,1 h x(s) =

x(s + h) - x(s). The Besov space B~, p consists of all x E L p such that

(1.7 )

Conditions (1.5) and (1.7) are equivalent. Using this fact, we get an
explicit characterization of the space defined by (1.4).

Similar results were obtained by Grisvard [2] and Lofstrom [3,4] in
connection with interpolation of boundary value problems.

This work was supported by the Swedish Research Board for Natural
Sciences.

2. Two BASIC INEQUALITIES

The inequalities of Jackson and Bernstein play an important role in the
characterization of the approximation spaces Eap (no constraints). To
describe these inequalities we introduce generalized Sobolev space H: as
follows. Let the operator IDI be defined by (IDlx)"(O=I(lx"(O. Then
H: consists of all Lp-functions x such that IDI N x E Lp. As semi-norm on
H: we use

where II II denotes the norm on Lp • Then the inequalities of Jackson and
Bernstein read

E(A, x) ~ C}. - N Ilxll N,

Ilxll N ~ qxll; Ilxll, XES.

(2.1 )

(2.2)
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These inequalities can be used to characterize the approximation space E,p
as a Besov space.

We are now going to state and prove the counterparts of the inequalities
of Jackson and Bernstein for best approximation with constraints.

Consider the constraint operators r jk defined in Section 1, using the
differential operators P jk of order n jk , Choose an integer N which is large
enough (see below). Then Sobolev's embedding theorem implies that if
x E H;' then Pjk x are continuous functions on the real line. Thus Fjdx) are
well defined quantities. We now introduce the space H:r of all x E H;' such
that rjdx) = 0 for.i = 1, ... , J, k = 1, ... , K,. We also consider the space of all
x E If satisfying these constraints.

THEOREM 1 (The Inequalities of Jackson and Bernstein). If N is larger
than the orders of the d(/ferential operators appearing in the definition of the
constraints r,k' then

Ero., x) ~ O. N Ilxll v,

IlxIIN~Cllxll~ IIXII,

if x E H ;~, ), > I,

if xEg/" Ilxll,$>1.

(2.3 )

(2.4 )

Proof Bernstein's inequality (2.4) follows at once from (2.2). For the
convenience of the reader we give the simple proof.

Choose a function <I> in the Schwartz class rp such that <1>" (¢) = 1 for
I¢I < 1/2 and <I>"(¢)=O for I¢I > 1. Put <I>;(s) = A<I>(}.S). Then if xEIf/, and
II xll,$ =,11, we have <1>211 *x = x. Thus

Since ID Iiii <I> ELI, we conclude that (2.4) holds.
We now prove Jackson's inequality (2.3). This is easy if we have no

constraints, since then we can simply put y = <I>,l *x. Clearly y E~· and
Ilyll,$ <).. Consequently EO., x) ~ Ilx - yll. Now define a function If' in rp by
writing

If' " (0 = I~ I N (<I> " (~) - <I> " (2¢)).

Then

x-y= I (<I>n"I-<I>;2')*X=). N I 2 N\lf'n' * IDINx, (2.5)
v>o v;": 0

which implies

(2.6 )

This proves (2.1).
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To show (2.3) we shall modify y to satisfy the constraints. Let us
introduce the functions

<{J jk (A, s) = Fjk (ct> ;. ( . - s )),

U/rn = I C Irn.jk i[J/k,
j. k

j=I, ,J, k= 1, ,Kj •

1=1, ,J, m=I, ,K/.

We shall choose the coefficients C,rn.jk so that

f'k {I
_ C<. «Jjk()" s) u/rn ()·, s) ds = 0

if j= I, k = m,

otherwise.
(2.7 )

We shall prove that this is possible and that

Accepting this for the moment we put

Z = )' - I. F jk (y) . ct>!. * ujk ·
i. k

Then (2.7) implies that

F/rn(z) = F/rn (y) - I. Fj. k(Y) IN <(J Im(A, s) uj . kP., s) ds = 0,
f, k - x

for all I, m. Thus z E tffrand

Er(A, x) ~ Ilx - zll ~ Ilx - )'11 + I. IF/m(y)IIIct>;. * u/rnll·
/. rn

(2.8 )

If xEH~"r we have F/rn(x)=O. Thus, using (2.5) we get

IF/rn(Y)I=IT/rn(x-y)I~A'N I 2 NVilt/J/m(}.2v,·)II'IIxIIN' (2.9)
\1=3:0

where

and II II' denotes the norm in Lp • Later on we shall prove

Thus (2.9) implies
IF/rn(y) 1 ~ 0. - N+ nlm+ liP Ilxll N'

Using this combined with (2.6) and (2.8), we get (2.3).

(2.10)
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It remains to prove (2.7), (2.8), and (2.10). Let us put

hjk,lm = (([J,b ([JIm) = IX ([Jjk(A, .1') <fJlm(A, .1') ds,
x

and consider the square matrix B formed by these numbers. For each A> 0,
B has an inverse, because

L Zjkbjk, ImZlm = ff_. IL Zjk ([J/k()" .1')1
2

ds
jklm J. )k

= fX) I~Z/kP/k(i~)e i"~</>A(~/Af d~>O

for all Z such that LIZjk 12 = 1. This is the point where we use the fact that
the orders njk of P jk are distinct for a given j.

Now we define the matrix [e/k,lm] to be the inverse of B. Writing

we have

</>11 = DIl
</>, n=nlm

Thus

b/k . 1m = AIlJk+ 111m + 1 fX _Q/k()', s) Qlm(A, A(SI- Sj) + .1') ds.
X

This implies that if j #-1 (i.e., .1', #- .\'/), then bjk,lm is very small if A is large.
If j = I, then hjk,lm has the form

h/k,lm = AliI' + 111m + 1 (!J/k,lm + O(A I)).

Therefore

Clm.jk=)' Il" Il'm 1 (Ylm.jk+ O(). I))

and thus

Il'm"'("._ +0(1. I))Q (J Js Je)f..., { I. m, Ik " jk ", " j - "., .
j, k

This gives (2.8).
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(3.1)

The estimate (2.10) is proved in a similar way since !/JIm has the form

!/J ImP., s) = ;." lm + IQ 1m0" ).sI - AS). I

3. BEST ApPROXIMATION AND INTERPOLATION

Using the inequalities of Jackson and Bernstein, we now describe best
approximation spaces in terms of interpolation spaces. Let E71,r be the
space of all x E L p such that

(r: (X7Er P., x))P ~A) lip < oc,

THEOREM 2. Suppose N is a positive integer and that 0 < IX < N. Then

() = IXIN. (3.2 )

Proof First let us recall the definition of the interpolation space on the
right-hand side of (3.2). It is defined by means of the functional

The space (Lp , H ;r)/!. p consists of all x E L p such that

(

I dt)liPL(t-/!Kr(t, x))P t < 00. (3.3 )

Thus we shall prove that (3.1) and (3.3) are equivalent if () = IXIN.
To prove that (3.3) implies (3.1) we note that for any y E H;r we have,

using Jackson's inequality

ErP., x) ~ Ilx - YII + Er(A, y) ~ C( IIx - YII +). -lVlI.vll N)'

This implies Er ()., x) ~ CKr (). - IV, x).
Conversely assume that IIx-zlI~2Er(2r,x)where ZrE~r, IIzrll6<2r

(r ~ 1). Put Zo = O. Then x = Lr;. 0 (zr +1- zr)' By Bernstein's inequality we
have

KrU -N, Zr+ 1- zr) ~ min(llzr+ 1- zrll, A-Nllzr+ I - zrll ,~,)

~ C min( I, A- N2Nr)llzr+ 1- zrll.

Thus

Kr().N, x) ~ C L min(l, A-N2 Nr ) Er (2 r + I, x).
r~O
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From this estimate we deduce that (3.1) implies (3.3) in the following way.
First we observe that

(f l dl)I/1'
() (1 IiKr(t, X»" t

( )

l/II

~ C ,E (2"Kr (2- NI, xlV

~ C ( I ( I 2'1' ,) min(l, 2N
(,

s~o r~O

The right-hand side can be viewed as the norm of a convolution between
the sequences 2" min( I, 2N

') and 2"£1'(2', x). Since

x

I 2 "min(l, 2N
') < 00

we conclude that

(

I dl) 1/1' ( ) 1/1'f I IiKr(t,x))"- ~c I (2"Er (2',x))" .
() I ,;, 0

This proves the implication from (3.1) to (3.3).

4. REDUCTION TO A SINGLE POINT

We consider a set F of constraints of a particular form. They are
given by means of distinct points s" j = I, ..., J, and differential operators
Pik by means of the formula F;dx) = (Pjk(D) x)(Sj) = O. For a given m
(m = I, ... , J) we let F j be the set of all constraints Fib k = I, , Kj , and
H;fj be the space of all xEH; such that rjdx)=O for k= I, , Kj . We
claim that

M

(L p , H;r)o.p= n (L p, H;rJo.p.
m= 1

(4.1 )

This result makes it possible to reduce the proof of our main result to a
single point Sj'

To prove (4.1) let x belong to the intersection on the right-hand side.
Assume that Yj E H ;1', and

Ilx - Y,II + IllyjllN ~ 2Kr,(I, x), j= 1, ..., J.
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We also assume that YoEH: and Ilx-Yoll+tIIYoIIN:S;2K(t,x) where
K(t,x)=inf(llx-YII+tIIYIIN) (no constraints). Let Xj be an infinitely
differentiable function with compact supports in a small neighbourhood of
Sj and assume that Xj is identically 1 in a neighbourhood of Sj' Put
Xo = 1 - I. Xj and z = XoYo + XlYl + ... + XJ YJ· Then Tj(z) = 0 for all j and
thus

M

Kr(t, x):S; Ilx - zll + tllzllN:S; I (1Ixk(X - h) 11+ IIlk hll N)
k~O

M

:s;C I (1Ix-Ykll +tIlYkIIN)'
k~O

This proves that x E (Lp , H:r )0, p' The converse inclusion is trivial.
In order to prove our main result it is now enough to consider a single

constraint r of the form Tdx) = (PdD) x) (0) = 0 where

The rest of the paper will be devoted to the proof of the following theorem.

THEOREM 3. The interpolation space (Lp, H:r)o.p such that

Tk(x) = (PdD) x) (0) = 0,

(f E(1 fT ) pip
o ~-T IPk(D) x(sW ds < oc,

no condition

if eN> nk ; + lip,

if eN = nk + lip,

if eN < nk + lip.

Clearly this result, in combination with (4.1) will give our main result.

5. PROOF OF THEOREM 3

As a first step towards the proof of Theorem 3 in the previous section,
we shall characterize the interpolation spaces (Lp , H :)0, P and (Lp , H ~')ool)

in a way that makes it easy to compare these two spaces.
Let us put H::O = H: and define H:m as the space of all x E H: such that

rk(x)=o for k=I, ... ,m. Here rk(x) = (Pk(D)x)(O) and Pk are differen­
tial operators of order nk (0 ~ n I < ... < nM < N). Then we shall recursively
characterize the spaces (L p , H~"",)o,p, m=O, 1, ..., M, by means of a family
Am(t) of operators and a corresponding functional L m defined by

640.nJ.3·9

O<t<oc. (5.\ )
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LEMMA 1. Suppose Am(t) is strongly continuous on L p and that Am(t)
maps L p into H;mfor each t>O. Moreover, assume that

Ilx - A m(t) xii, til Am(t) xii N ~ CIIxll

Ilx - Am(t) xii, tIIAm(t) xii N ~ Ctllxll N

Then x E (L p , H ~n)/I." if and only (l x E Lp and

if xELp ,

if xEH~n'

(5.2 )

(10

1 (t dt))'i'J

. /lLm(t, x)" t < 00.

Proof See [I]. I
In order to define the operator Ao(t) we introduce the function H! by

the formulas

H!(s) = r'IH(s/r). (5.3 )

Then we put Ao(t)x=H!*x, if t=r N
• Then it is easy to see that (5.2)

holds with m = O. Next we define Am(t) by a construction which is similar
to the one used in the proof of Theorem 2. We put

41,,(r, a) = (PI,(D) H!)( -a)

m

Am(t)x=H!*x- I (x,41d·H!*Ub
k~1

where the functions Uk are defined by

m

Uk= L: Ckl,41"
\'= I

(5.4 )

(5.5 )

(5.6 )

(5.7)

This means that the matrix [Ck"J is the inverse of the matrix [b"d where
h"k = (41" 41d· The existence of an inverse is proved in the same way as in
the proof of Theorem 2. It follows that

As a consequence we get

m

Ilx-Am(t)xll~llx-H!*xll+c I r"HI/p I(x, 41dl,
k = \

t = rN,

(5.8 )
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m

tIIAm(t)xIIN::::;tIIHr*xIIN+c I r" k +
I/P I(x,cpdl.

k~1
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Moreover we have (Pv(D) Am(t) x)(O) = O. In order to show that Am(t)
satisfies the assumptions of Lemma I it is enough to show that

This is easily seen in the following way. First note that

If xEH;:'" we have (Pk(D)x)(O)=O. Now note that y*H r =
y_r 2N IDI N y* IDI N Hr. Thus we have

(x, cpd = (PAD) x * HT)(O)

= (Pk(D) x)(O) - r2N(IDI N Pk(D) x * IDI N Hr)(O)

= _r 2N(lDI N x * PAD) IDI N HT)(O).

Consequently,

We have now proved that Am(t) satisfies the assumptions of Lemma I. As
a consequence we get the following lemma.

LEMMA 2. Let H r be defined by (5.3). Then xE(Lp, H;:"')o,p if and
only if

xE(Lp, H;)o.p(( (r NO
+n

k
+l/

P I[x; HT(-o-) Pk(D)x(o-) do-IY dr/rY')

< 00 for k = 1, ..., m.

Proof First note that (Lp,H;m)o.pc(Lp,H;m_I)O,I" Let L", be
defined by (5.1). By inspection of the difference between L m and L m _ lone
easily sees that XE (Lp, H;m)o.p if and only if XE (Lp, H pm _do, I' and

where IIHr * umll ::::; Cr"m+ I/p. Since (x, CPm) = (Pm(D) x * HT)(O), we get the
conclusion of the lemma. I
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The proof of Theorem 3 is now nearly complete. We have only to apply
the following result.

LEMMA 3. Assume that yE(Lp, H:)~.p. Then

if and only if

y(O) = 0

(f (~r ly(oo)IP doo)I'/P dr/r) 1/1' < oc,
o r -,

no condition

if Nfl> lip,

if N'1 = lip,

if Nfl < lip·

Proof First consider the case 0( = N'1- lip> O. Suppose y E (Lp , H :)~. I'

and R~. p(y) < 00. Then y is a continuous function and

lim IX' HT( - a) y(oo) doo = cy(O), c # O.
t--+O -,x'

Consequently R~. p(y) < oc implies y(O) = 0 if 0( > O. Conversely assume
y(O)=O. Then we put z(s)=y(s)-y(2 '05) and zk(s)=z(2- ks). Then
y=Lk;:'OZk and zE(Hp,H:r)~.p where r(z)=z(O)=O. Then Lemma2
implies that R~. p(z) < 00. Thus

R~.p(Y)~ I. R~.p(zd= I. 2-'kR~.j)(z)< UJ.
k;:.O k;:.O

Next consider the case IX = N'1- lip < O. Then put z(s) = y(s) - y(2s) and
zk(s)=z(2ks). Then Y=Lk;:'OZk in L p and zE(Hp,H;r)~.p so that
R~. p(z) < UJ. Thus

R~.p(Y)= L R~.p(zd= L 2'kR~.p(z)<oo.
k;:.O k;:.O

Finally we consider the case IX = O. Then partial integration gives

Ir= H'( -a) y(oo) doo I~ I{X DH(oo) ~r t

y(s) ds doo I

I
Q

' ( I I'H )1/1'
~ 0 ooIDH(oo)1 ar 0 ly(s)IP ds doo.
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which implies R~. 1'( y) < CIJ.

Still considering the case rL = 0, i.e., N~ = lip, we shall now prove that
R~. p(y) < 00 implies that

( '(I )pIpdr)l/pL ;ly(sWds ~ <00.

If R~.p(Y)< 00 we have y E (Lp, H:r)~. I' where ry = y(o) (by Lemma 2). It
is a routine matter to prove that yE (Lp' H~r)IIP'p, For the convenience of
the reader we provide the details here. Using the so called J-method of
interpolation theory (see [I, Sect.3.2]) any YE(Lp,H:r)~.p can be
represented as

y(s)= fxc u(r,s)dr/r,
o

where u(r, 0) = 0 and

Using Kolmogorofs inequality we have

max(lIu(r)lI, rllu(r )111) ~ C max(lIu(r)lI, rNllu(r )11 N)'

Thus

(
XC. dr)llPL(r- lip max(lIu(r)lI, rllu(r)11 d)p ~ < 00

which implies y E (Lp, H ~r) III'. p' By definition this means that y = Yo +Y t

where Yl E H~, Y(O) = 0. Given any function z we define z by

if s ~ 0,

if s < O.

Then Yt E H~, Yo ELI" in both cases with equal or smaller norms. Thus
Y= Yo + Yt E (L p , H ~)I/p. P' But this implies that

(f
·XC. ( (fW )1/1')1' dr)lil'
-x r- liP _

x
ly(s+r)-y(sWds ~ <00,
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which gives
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(

X (1 r ) pip dT:) lipfa ~ fa ly(sW ds --; < 00.

Replacing y(s) by y( -s) we get

([Gr, ly(s)jP dsriP ~rYil' < 00. I

We can now conclude the proof of Theorem 3, by applying Lemma 3
with y = P k (D) x and 11 = () -11k/N.

REFERENCES

I. BERGH-LoFSTROM, "Interpolation Spaces, an Introduction," Springer-Verlag, New York/
Berlin, 1976.

2. P. GRISVARD, Caracterisation de quelques espaces d'interpolation, Arch. Rational Mech. 25
(1967), 4~63.

3. J. LOFSTROM, A new approach to interpolation in Hilbert spaces, J. Fanct. Anal. 101 (1991 l,
177-193.

4. J. LOFSTROM, Interpolation of boundary value problems of Neumann type on smooth
domains, J. London Math. Soc. (2), in press.


